Vet World   Vol.15   April-2022  Article-41

Research Article

Veterinary World, 15(4): 1134-1140

https://doi.org/10.14202/vetworld.2022.1134-1140

An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand

Masfufatun Masfufatun1, Rini Purbowati2, Nira A. Arum3, Mey S. Yasinta3, Sri Sumarsih3, and Afaf Baktir3
1. Department of Biochemistry, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia.
2. Department of Biomedicine and Biomolecular, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia.
3. Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia.

Background and Aim: Candida albicans is the most prevalent human fungal pathogen. In biofilms, C. albicans becomes more resistant to antifungal agents because of the production of an extracellular matrix (ECM) that protects the yeast cells. This study aimed to determine the effects of hydrolase enzymes and the Bgl2 ligand on monomicrobial and polymicrobial biofilms.

Materials and Methods: Biofilm induction in rats was carried out using streptomycin (25 mg/kg) and gentamicin (7.5 mg/kg) administered orally once per day for 5 days. Rats were injected subcutaneously with cortisone acetate (225 mg/kg) as an immunosuppressant on day 5. In addition, rats were orally administered C. albicans for the single microbial model and a combination of C. albicans with Escherichia coli for the polymicrobial model. Following the biofilm production, the groups were treated with glucosamine (8.57 mg/kg body weight) and Achatina fulica hydrolases (1.5 mL) orally for 2 weeks. The reduction of the biofilm was measured using confocal laser scanning microscopy (CLSM). Data were analyzed using a t-test, with a significance value of 95%.

Results: CLSM images revealed a strong association between C. albicans and E. coli in the polymicrobial biofilm. On the contrary, the combination treatment using glucosamine and A. fulica hydrolases reduced the ECM of the single microbial biofilm (53.58%). However, treatment effectiveness against the matrix (19.17%) was reduced in the polymicrobial model.

Conclusion: There is a strong association between C. albicans and E. coli in the formation of polymicrobial biofilms. The combination of glucosamine and the A. fulica enzyme can reduce the single microbial biofilm ECM; however, it is ineffective in the polymicrobial model. Keywords: Achatina fulica hydrolases, Bgl2 ligand, Candida albicans, Escherichia coli, intestinal polymicrobial biofilm.

Keywords: Achatina fulica hydrolases, Bgl2 ligand, Candida albicans, Escherichia coli, intestinal polymicrobial biofilm.

How to cite this article: Masfufatun M, Purbowati R, Arum NA, Yasinta MS, Sumarsih S, Baktir A (2022) An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand, Veterinary World, 15(4): 1134-1140.

Received: 16-11-2021  Accepted: 14-03-2022     Published online: 29-04-2022

Corresponding author: Masfufatun Masfufatun   E-mail: masfufatun@uwks.ac.id

DOI: 10.14202/vetworld.2022.1134-1140

Copyright: Masfufatun, et al. This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.