Vet World Vol.15 August-2022 Article-1
Research Article
Veterinary World, 15(8): 1896-1905
https://doi.org/10.14202/vetworld.2022.1896-1905
Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model
2. Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
3. Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
4. Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand.
5. Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
Background and Aim: Clostridium toxins are widely used as medicinal agents. Many active metabolic enzymes, including sialidase (neuraminidase), hyaluronidase, and collagenase, contribute to the mechanism of action of these toxins. Sialidase from Clostridium perfringens recognizes and degrades sialic acid receptors in the host cell glycoprotein, glycolipid, and polysaccharide complexes. Sialic acid promotes the adhesion of various pathogens, including viruses, under pathological conditions. This study aimed to investigate the potential of C. perfringens sialidase protein to inhibit Newcastle disease virus (NDV) infection in ovo model.
Materials and Methods: C. perfringens was characterized by molecular identification through polymerase chain reaction (PCR) and is cultured in a broth medium to produce sialidase. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis was conducted to characterize the sialidase protein. In contrast, enzymatic activity and protein concentration were carried out using a neuraminidase assay kit and Bradford to obtain suitable active substances. Furthermore, embryonated chicken egg models were used to observe the toxicity of several sialidase doses. Then, the hemagglutination (HA) titer was obtained, and absolute quantitative reverse transcription–PCR assay was performed to measure the viral replication inhibitory activity of sialidase against NDV.
Results: Each isolate had a specific sialidase gene and its product. The sialidase derived from C. perfringens could hydrolyze the sialic acid receptor Neu5Ac (2,6)-Gal higher than Neu5Ac (2,3)Gal in chicken erythrocytes, as observed by enzyme-linked lectin assay. A significant difference (p = 0.05) in the HA titer in the pre-challenge administration group at dosages of 375 mU, 187.5 mU, and 93.75 mU in the competitive inhibition experiment suggests that sialidase inhibits NDV reproduction. Quantification of infective viral copy confirmed the interference of viral replication in the pre-challenge administration group, with a significant difference (p = 0.05) at the treatment doses of 750 mU, 375 mU, and 46.87 mU.
Conclusion: The potency of sialidase obtained from C. perfringens was shown in this study, given its ability to reduce the viral titer and copy number in allantoic fluids without adversely impacting the toxicity of the chicken embryo at different concentrations. Keywords: Clostridium perfringens, lectin, polysaccharide, sialidase, viral replication.
Keywords: Clostridium perfringens, lectin, polysaccharide, sialidase, viral replication.
How to cite this article: Kurnia RS, Tarigan S, Nugroho CMH, Silaen OSM, Natalia L, Ibrahim F, and Sudarmono PP (2022) Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model, Veterinary World, 15(8): 1896–1905.
Received: 15-03-2022 Accepted: 22-06-2022 Published online: 06-08-2022
Corresponding author: Pratiwi Pudjilestari Sudarmono E-mail: psdrmn@yahoo.com
DOI: 10.14202/vetworld.2022.1896-1905
Copyright: Kurnia, et al. This article is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.